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Measuring trigger efficiencies from data: In-
troduction

• The Aim: To reduce dependency on MC, and measure (relative) trigger
efficiencies from real data

• Method known as “tag and probe” or “double object” method
• What is measured? Thesingle object trigger efficiency, relative to the

offline selection
• For e25i, we useZ → ee decays
• This work has been in collaboration with many people from CERN,

including E. Dobson, N. Ellis, T. Fonseca Martin, C. Padillaand T.
Weidberg, and my supervisor at Liverpool, Joost Vossebeld
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The Art of Statistical Computing
• There is a large amount of available data available on the grid for sample

5144 (Pythia, inclusiveZ → ee)
• trig1_misal1_csc11.005144.PythiaZee.recon.AOD.v12000601

• Sample includes material distortions and misaligned geometry
• In v12, full trigger information is on ESD and AOD

• AODs used to produce custom NTuple, with full electron trigger slice
included

• DQ2 input dataset⇒ use ganga
• Dataset split into 100 subjobs:

• 17 - Job proxy expired
• 52 - Error copying output file
• 31 - Successful
• Total output retrieved - 25
• 105,000 events
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The tag and probe method

In its simplest form, this method integrates over all relevant kinematical
variables to obtain aglobal trigger efficiency. Two samples are defined:

• Diagnostic sample: N1 events where at least one electron passes trigger
• Control sample: N2 events where at least two electrons pass trigger

The numbersN1 andN2 are determined by counting in the absence of
background (more generally, by sideband subtraction or a mass peak fit).

To give a clean enough sample, insist on offline event selection with efficiency
ǫr. Then, givenN0 true events, with acceptanceA:

N1 − B1 = (2ǫt − ǫ2t ) · ǫrAN0

N2 − B2 = ǫ2t · ǫrAN0

ǫt =
2(N2 − B2)

(N1 − B1) + (N2 − B2)
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Global trigger efficiencies

Offline selection:
• 2 loose electrons (cluster + track match +ET > 25 GeV)
• Opposite charge
• 70 < Mee < 100 GeV (Radiative losses & EM energy scale - G. Unal)

All efficiencies are relative to the offline selection and double-object signature
of all lower levels

Trigger With Without Preselection

Level crack crack

L1 (97.6±0.1)% (97.7±0.1)% Offline + EM25I

L2 (94.0±0.1)% (95.7±0.1)% Offline + 2EM25I + e25i(L2)

EF (94.3±0.1)% (94.4±0.1)% Offline + 2EM25I + 2e25i(L2) + e25i(EF)
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Differential trigger efficiency

The global efficiency is essentially a differential efficiency with one bin. With
more than one bin, different statistics apply depending on where the electrons
fall. Consider probe electrons inone bin:

• Remember,N1 andN2 countevents, notelectrons

• Case A: Tag is in a different bin - electrons are distinguishable

ǫ ∼ N2/N1

• Case B: Tag is in the same bin - indistinguishable, like the global case

ǫ ∼ 2N2/(N1 + N2)
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Equation depends on binning, not how many dimensions the histogram has
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L1 trigger efficiency (EM25I)
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Dip at lowη is caused by isolation cuts (see T. Fonseca Martin’s egamma talk
from Tuesday)
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L1 trigger efficiency (EM25I)
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Error at 90% efficiency is∼ 1 − 2%
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L2 trigger efficiency (e25i)

η-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5

∈

0.8
0.82
0.84
0.86
0.88
0.9

0.92
0.94
0.96
0.98

1
L2 efficiencyL2 efficiency

TE25 30 35 40 45 50 55 60 65 70 75

∈

0.86
0.88

0.9
0.92
0.94
0.96
0.98

1
L2 efficiencyL2 efficiency

φ-3 -2 -1 0 1 2 3

∈

0.9
0.91
0.92
0.93
0.94
0.95
0.96
0.97
0.98
0.99

1
L2 efficiencyL2 efficiency

η

ET

φ

2D plots may shed some light on these strange shapes. . .
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L2 trigger efficiency (EM25I)
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Error at 90% efficiency is∼ 2%
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EF trigger efficiency (e25i)
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Efficiency is flat inpT, but not inη. But this is relative to L2, which was very
efficient in the barrel, and not in the end-caps
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EF trigger efficiency (EM25I)
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Error at 90% efficiency is∼ 2%

Electron fake rates and trigger efficiency – p. 12/19



Further work: Trigger efficiency measurement

Starting to obtain useful statistics for differential trigger studies.
Varied interests within the group:

Ellie Z+jets, effect of jetpT, electron/jet spatial separation, jets in cracks. . .

Teresa Systematics, eg using a different calibration for HLT and offline
reconstruction

Comparison of misaligned geometry
vs. ideal (T. Fonseca Martin)
Red = Ideal
Blue = Misaligned
Also no noticeable variation with defi-
nition of offline electron (loose/tight)

Tony Offline reconstruction efficiency, starting with e-jet sample

Myself NTuple rest ofZ → ee dataset -5× what I have now, and investigate
features in differential plots and backgrounds
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Estimating the jet background in Z → ee: In-
troduction
This study uses version 11.0.42
The aim: to effectively parameterise backgrounds to theZ → ee channel
involving QCD fakes.
Here a fake is anything that isn’t a real electron from an electroweak process
The idea:

1. Parameterise the probability of a single jet to be reconstructed as an
electron (theJet Weight)

2. Use this parameterisation to produce anEvent Weight - a product of two
Jet Weights in the case of dijet events

Samples ntupled via the grid:
• PythiaZ → ee sample 5144 - 490,000 events
• Pythia jets (J1-J8), samples 5010-5017 (J7 missing) - 258,000 events in J2
• PythiaW → eν, sample 5104 - 90,000 events

Official AOD production, no trigger information
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Determining the Jet Weight: Numerator

Efficiency is a ratio:Nelec/Njets.
Plot shows separation (∆R) between true electron and nearest QCD particle.
Real electrons in dijet events are associated with heavy flavour decays and
will be close to jets.
Numerator: Fiducial reconstructed electron with isEM==0,ET > 25 GeV,
∆R(elec, jet) < 0.4.
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Determining the Jet Weight: Denominator and
result
Efficiency is a ratio:Nelec/Njets.
Heavy flavour jets may contain real electrons⇒ these need to be dealt with
separately - JetTagInfo associates each jet with the truth.
BJetCollection is essentially a copy of Cone4TowerParticleJets, with extra
flavour information.
Denominator: BJetCollection jet, separated by jet type andpT.
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Background to theZ → ee channel
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For dijets:
Event Weight =

JetWeight1(pT, flavour)
× JetWeight(pT, flavour)

For W → eν, e-jet combinations
are used:
Event Weight =

JetWeight(pT,flavour)

Health Warning: No allowance made here for difference between jet and EM
energy scales.
Luminosity =1pb−1, with 284 signal events, 7.6 background events.
(61 < MZ < 121 GeV)
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Can Jet Weights be measured from data?

Must find an unbiased jet sample which is sufficiently pure.

Top plot: Reconstructed single electronET spectrum (using Jet Weights)

Bottom plot: Anti-W/Z cuts applied:Emiss
T < 25 GeV and

< 2 reconstructed electrons
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Further work: Jet background in Z → ee

• Version 12.0.6 AODs now available, new data appearing all the time
• What effect will distorted geometry have on these results?

• Grid ntupling is very inefficient (see earlier) - getting meaningful
statistics may take time as jobs fail and are resubmitted. . .

• Available statistics with filtered dijets (5802) may be moresignificant
than Pythia Jn samples used so far

• Many effects still to study:
• Include effect of trigger
• Isolation to improve jet rejection (stats?)
• Hard (leading) jet vs. softer (sub-leading) jets
• Effect of different cone sizes
• Backgrounds for loose/medium/tight offline electron selections
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